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T Janssen†, B Hennion+ and Yu M Vysochanskii∗

† Research Institute for Materials, University of Nijmegen, Toernooiveld, NL-6525 ED
Nijmegen, The Netherlands
‡ Institut Laue–Langevin, BP 156X, 38042 Grenoble Cédex, France
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Abstract. This paper presents an inelastic neutron scattering study of the proper ferroelectric
Sn2P2Se6 and elastic neutron scattering results on the satellite diffraction pattern which char-
acterizes the modulated phase. The temperature dependences of the satellite intensities and
modulation wavevector are in fair agreement with results from previous x-ray experiments.
Close to the incommensurate-to-ferroelectric transition temperatureTc, an unexpected intensity
overshoot is observed, similar to that seen in birefringence and dilatation experiments.

The relationship between the lattice dynamics and the observed phase transition sequence
is examined. The dispersion of the ferroelectric soft optic phonon (Px -polarization) and of the
acoustic phonons is followed along thea∗- andc∗-directions. In the ferroelectric phase, the TO
mode shows a considerable softening as the incommensurate phase is approached from below.
In the paraelectric(T > Ti) and incommensurate(Tc < T < Ti) phases, the response from
the TO (Px -polarization) and TA (∂ux/∂z strain) branches has been investigated via a series of
constant-q scans in thec∗-direction (approximately the modulation wavevector direction). The
combined inelastic line-shapes, as observed in a number of non-equivalent Brillouin zones, could
all be analysed in terms of a coupled-mode damped harmonic oscillator model. In addition, a
diverging, resolution-limited, central peak is observed close toTi . It is suggested that the TO–TA
coupling lies at the origin of the incommensurate instability. A phenomenological free energy
is developed, in the continuum approximation, in which the TO–TA interaction is included via
a pseudo-Lifshitz term of the type(∂ux/∂z)(∂Px/∂z).

1. Introduction

Ferroelectric phase transitions have received considerable attention as regards their structural
and dynamical aspects—for example, in BaTiO3 [1] and thiourea [2]. In particular, the
existence of soft modes and/or order–disorder mechanisms has been the subject of numerous
optical and neutron spectroscopic studies. In certain systems, of which the so-called type II
incommensurate proper ferroelectrics are examples, an incommensurate (IC) phase appears
between the high-temperature (symmetric) phase and the ferroelectric phase. BCCD [3],
NaNO2 [4], thiourea [2] and Sn2P2Se6 are examples of this class of systems. ‘Type II’ means
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that the thermodynamic potential contains no Lifshitz invariant. Hence, in such systems
the incommensurate phase is thought to arise [5] from the interaction of the ferroelectric
soft optic mode with an acoustic mode [3] or with another optic phonon [6], creating an
instability at non-zero wavevector.

Electronic mechanisms may also be of importance for the transitions in the semi-
conductors Sn2P2(S1−xSex)6. For example, the memory effect [7] observed in the incom-
mensurate phase has been shown to result from the trapping of charge carriers at modulated
impurity levels. A similar mechanism is likely to be responsible for the induction by
temperature stabilization of an intermediate, probably incommensurate, phase in Sn2P2S6,
which normally undergoes a direct paraelectric-to-ferroelectric transition. The anomalous
intermediate phase is observed when stabilizing the temperature in the paraelectric phase
just above the phase transition temperature [8].

Figure 1. The composition–temperature phase diagram of Sn2P2(S1−xSex )6 [9].

The Sn2P2(S1−xSex)6 family of uniaxial ferroelectrics is an excellent model system
for studying the appearance of an intermediate IC phase, since mixed crystals can be
grown for all values ofx (0 < x < 1). Sn2P2Se6 shows an intermediate incommensurate
phase at ambient pressure, in contrast to Sn2P2S6 (figure 1). The latter undergoes a direct
second-order phase transition atT0 = 337 K between a paraelectric phase(P21/n) and a
ferroelectric phase (Pn; n = ( 1

2 0 1
2) for both). The phase transitions in Sn2P2Se6 occur at

Ti = 221 K andTc = 193 K.
The x–T phase diagram exhibits the rare Lifshitz point, at which the period of

modulation is expected to become infinite [9]. For crystals with compositionx 6 xL = 0.28,
the phase transition occurs at the Brillouin zone centre(q = 0) and atq = qIC 6= 0 for
x > xL. The existence of the Lifshitz point is therefore closely related to the question of
why the incommensurate phase exists only in one part of the mixed-crystal(x, T ) phase
diagram. To gain an understanding on this point we have initiated a lattice dynamical study
of the two end members, by means of inelastic neutron scattering, which allows us to probe
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phonons throughout the Brillouin zone.
The results of the experiments are reported below. They show the feasibility of further

INS studies on mixed crystals, in particular on crystals withx-values close to the ‘Lifshitz’
composition, where fluctuations will be enhanced. Recent theoretical investigations predict
a substantial deviation of the critical exponents from the mean-field value [10] in the vicinity
of the multicritical Lifshitz point.

Figure 2. The superimposed structures of Sn2P2Se6 in the paraelectric and ferroelectric phases
[11, 12], showing the main relative displacements of the Sn2+ cations upon transition to the
ferroelectric phase (indicated by the arrows).

The changes in structure between the paraelectric and ferroelectric phases have been
well studied for Sn2P2Se6 [11, 12] and Sn2P2S6 [13, 14] via x-ray structure determinations
for both phases (figure 2). Throughout the paper we use the pseudo-orthorhombic setting
of Rizak et al [15]: a = 9.652 Å, b = 7.679 Å, c = 6.810 Å, α = γ = 90◦, β = 91.4◦

(Sn2P2Se6, 293 K). The structure includes two [P2Se6]4− ionic units, each consisting of two
trigonal PSe3 pyramids, rotated about the connecting phosphor pair. The two [P2Se6]4−

units are related by a glide plane (ana–c plane) in both phases. In the paraelectric phase,
the four tin atoms occupy equivalent general positions and are eightfold coordinated with
the selenium atoms. Upon transition to the ferroelectric phase the Sn atoms move in phase,
approximately along thea-axis (0.32Å for Sn(I) and 0.28Å for Sn(II)) and with opposite
phases along theb-axis (0.04Å) relative to the rigid P2Se6 groups, destroying the inversion
symmetry and the twofold axis. The displacements correspond to Bu symmetry and result in
the appearance of a dielectric polarization in thea–c plane at an angle of 10◦ to thea-axis.
In addition, they give rise to two relatively short Sn–Se bonds, leading to the formation
of chains of connected P2Se6 groups, parallel to thec-axis. Sn2P2S6 is isostructural to
Sn2P2Se6 in both the paraelectric and ferroelectric phases.

The dynamics of the two compounds have been studied both theoretically and
experimentally. Some important aspects, such as the mechanism of the incommensurate
phase formation, remain unclear however. Lattice dynamical calculations based on a rigid-
ion model [15, 16] could simulate a soft Bu phonon in the Brillouin zone centre in the
paraelectric phase with ionic displacements mainly alonga. The soft-mode behaviour of
Sn2P2S6 has also been studied by Raman [17], infrared [18] and dielectric spectroscopy [19].
The acoustic properties were investigated by means of ultrasound measurements [20, 21]
and Brillouin scattering [22]. All of the experimental results indicate that the transition is
mainly displacive. In Sn2P2S6 the existence of a soft mode in the ferroelectric phase has
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clearly been demonstrated by Raman and infrared spectroscopy. The soft mode appears not
to soften completely (it is about 0.35 THz atT0). Infrared measurements for the paraelectric
phase of Sn2P2S6 indicate an overdamped Bu soft mode at about 0.4 THz, slowly varying
with temperature. However, the analysis is difficult due to a strong low-frequency wing
partly obscuring the soft-phonon response. The origin of the wing is still unclear and might
reflect a coupling of the soft mode to a lower-frequency excitation or an order–disorder
component in the neighbourhood ofT0.

Further indications that the soft mode might contain an order–disorder component come
from Brillouin scattering, where the LA (uzz) response shows evidence of a coupling to a
low-frequency excitation or a central peak close toT0. Also, specific heat measurements
[23] reveal a large transition entropy at the second-order phase transition temperaturesTi
(crystals withx > xL) andT0 (crystals withx 6 xL), typical of an order–disorder transition.
In contrast, at the lock-in transition (Tc) a much lower transition entropy was observed.

In this study of Sn2P2Se6 it is shown that the harmonic coupling of the soft optic phonon
with acoustic and other optic phonons is strong and that a clear soft-mode behaviour is
observed in connection with the ferroelectric transition.

In the mixed compounds Sn2P2(S1−xSex)6, a soft mode in the ferroelectric phase has
previously been found in the rangex = 0 tox = 0.6 by Raman spectroscopy [24]. Recently,
new Raman experiments have shown that the soft mode can be observed in Sn2P2Se6 as
well, softening from 1.20 THz to 0.72 THz (atTc − 4 K) [25].

The formation of the incommensurate phase has been simulated in lattice dynamical
calculations, which indicated that the rotation of the anions (the P2Se6 molecular groups)
might contribute to the formation of the incommensurate phase via optic–acoustic mode
coupling. The instability was predicted to occur from the coupling of∂Px/∂y and
uxy . However, x-ray experiments [26, 27] show that the modulation wavevector of the
incommensurate phase points in a direction close to thec-axis. Barsamianet al [27] found
evidence, via x-ray study, that a plane transverse-modulation wave appears in thea–c glide
plane, in which mainly Sn2+ cations move by in-phase displacements (in the [0k 0] planes)
approximately along thea-direction. The transverse character is not imposed by symmetry,
but may be related to the polar character of the displacements.

The Raman investigations by Gommonaiet al [28] show that the soft mode (in Sn2P2S6)
has a complicated temperature and directional dependence in thea–c as well asa–b planes.
There, it could be attributed to strong anisotropic interactions of the soft TO (Px) mode
with the nearby optic modes ofPy- andPz-polarization, and the LO–TO splitting giving rise
to angular dispersion. This poses the further question of whether in the similar compound
Sn2P2Se6 the incommensurate phase formation is related to an optic–acoustic or to an optic–
optic coupling mechanism.

The dynamics in the incommensurate phase, where two new excitation branches
(amplitudons and phasons) are expected, has hardly been studied. Dielectric spectroscopy
[29] indicates a soft excitation contributing substantially in the 100 GHz range in the
paraelectric phase (a soft mode) and incommensurate phase (attributed to the continuation of
the paraelectric Bu mode and the (overdamped) phason). However, no direct measurements
of these excitations in Sn2P2Se6 have yet been performed.

Finally, the exact nature of the lock-in transition is not fully understood. Birefringence,
dielectric and dilatation measurements show anomalies in the lower part of the incom-
mensurate phase, indicating that the behaviour of Sn2P2Se6 is more complex than is predicted
by elementary theoretical models.

All of these open questions motivated the present series of neutron scattering meas-
urements. In section 3 below, the behaviour of the satellite reflections in the incommensurate
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phase is reported, while results on the dynamics of Sn2P2Se6, with an emphasis on the
incommensurate instability, are presented in section 4. The dynamics of Sn2P2S6 in both
phases will be reported in a subsequent paper [39].

2. Experimental procedure

Two large crystals of Sn2P2Se6 (each about 2 cm3 in volume) were used. Both crystals
were grown by the Bridgman technique. The selenium crystals showed metallic reflection,
in contrast to the sulphur crystals which are normally optically transparent with a slight
pink coloration. The crystalline quality of all of the specimens investigated was found to be
adequate by neutron diffraction standards, with no detectable mosaic structure or twinning.
One Sn2P2Se6 specimen developed cracks after rapid cycling through the first-order lock-in
transition atTc = 193 K.

Experiments were carried out on several thermal and cold-source three-axis neutron
spectrometers at JAERI-Tokai, Japan (TAS1), LLB-Saclay, France (4F1) and ILL-Grenoble,
France (IN3, IN12 and IN14). Several closed-cycle He refrigerators and cryofurnaces were
used during the course of the measurements, with typical temperature homogeneity and
stability of a fraction of a degree Kelvin.

Inelastic constant-Q measurements were performed in both the energy-gain and energy-
loss modes. The instrumental energy resolution was adjusted to match the experimental
requirements, by varying the incident- and scattered-neutron energies (from 5 to 14 meV),
as well as the neutron beam collimations.

3. The temperature behaviour of the satellite reflections

Measurements of Bragg satellite reflections for the incommensurate phase of Sn2P2Se6 were
carried out on two samples, sample No 1 and No 2, following previous x-ray diffraction
experiments by Barsamianet al [26, 27], who reported the satellite wavevector to lie 9◦

away from thec∗-axis direction. In their second study, Barsamianet al [27] found evidence
for a (plane) transverse modulation, involving in-phase displacements of the Sn2+ cations
approximately along thea-direction in the [0 1 0] planes. A linear increase of the satellite
intensity was found with decreasing temperature.

The dependence of the wavevector on temperature as measured by means of neutron
scattering for sample No 1 is given in figure 3 (curve 1). For comparison, the x-ray results
have been included. It can be seen that the neutron scattering data for sample No 1 are
consistent, well within the error bars, with the most recent x-ray results [27] (curve 4).
However, curve 2 (for the neutron study on sample No 2) and 3 (for the x-ray study (1986))
indicate somewhat lower values ofqc∗ throughout the IC phase. This discrepancy could
possibly be of instrumental origin (thermal gradients, inaccurate thermometry) in the case of
curve 2, but, nevertheless, the possibility of a small sample dependence cannot be excluded.
In the high-temperature part of the IC phase, the wavevector variation is approximately
linear in temperature, whereas at lower temperatures a steeper decrease is observed.

The observed temperature dependence of the wavevector has been analysed using a
thermodynamical potential of the type [30] (withz along the (fixed) direction of the mod-
ulation wavevectorq):
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Figure 3. The c∗-component of the modulation wavevector from neutron and x-ray scattering
measurements. 1: sample No 1, neutron (this work); 2: sample No 2, neutron (this work);
3: x-ray (1986) [26]; 4: x-ray (1992) [27].

in which β < 0, δ′ < 0, γ > 0, g > 0 andλ > 0. The coefficientβ < 0, since the virtual
paraelectric–ferroelectric transition changes from second order to first order atx ∼= 0.6 [31].
In this potential the term

λ

2

(
P

dP

dz

)2

is necessary to simulate the change of the modulation wavevector with temperature.
Assuming a sinusoidal modulationP = P1 sin(qz) and that onlyα = a(T − T0) is
temperature dependent, it can be shown that [32]

q2(T ) = q2(Ti)+ 1

2

((
4β2

i

9λ2
+ 8a

3g
(T − Ti)

)1/2

− 2βi
3λ

)
(2)

with βi = β+2λq2(Ti). The coefficientβi must be positive if we are to obtain a continuous
transition atTi . As a consequence, 2λq2(Ti) > |β| should be obeyed.

The experimental curves could all be analysed using formula (2). We performed
a weighted averaging on curves 1 and 4 (figure 3) resulting in the values for the
thermodynamic potential parameters 2βi/3λ, 8a/3g and the magnitude of the modulation
wavevectorq(Ti), taking the fixed proportionalityq/qc∗ ∼= 1.014 into account, given in
table 1.

Table 1. Thermodynamic parameters describing the temperature dependence ofqz(T ).

βi/2λ (in units of (c∗)2) 8a/3g (in units of (c∗)2 K−1) q(Ti) (=
√
δ′/2g) (in units of c∗)

0.0151± 0.0010 (5.9± 0.5)× 10−6 0.1045± 0.0005

The direction of the modulation wavevector was checked and found to be constant
in the IC phase [26, 27]: the angle that the modulation wavevector makes with thec∗-
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axis is found to be 9.4◦ ± 0.5◦, in agreement with the x-ray results. We could further
confirm the striking invariance of the magnitude of the lattice parametera in the IC phase:
a = 9.6275± 0.0010Å throughout the incommensurate phase.

Figure 4. The intensity of the (4 0 0,+) satellite reflection for the incommensurate phase of
Sn2P2Se6, showing a power-law variation close toTi with an intensity overshoot1I close to
the lock-in transition. Inset: determination of the (critical) exponentβ.

The integrated intensityI (T ) of the (4 0 0,+) = (4− qa∗ 0 qc∗ ) satellite increases
monotonically across the IC phase (figure 4). The intensity can be described by a power
law at temperatures close to that of the incommensurate phase transition [31]:

I (T ) = A|Ti − T |2β (3)

in which β = 0.43± 0.03 is the order parameter (critical) exponent and that temperature
Ti = 221.0± 0.5 K. This value forβ is close to the value deduced from birefringence
measurements (β = 0.46± 0.02) [33]. In contrast, a pure mean-field behaviour (β = 0.5)
was found in x-ray experiments [26, 27]. In the neutron measurements a straight line,
corresponding to mean-field theory, is significantly outside the error bars.

An estimation of the width of the critical region associated with the incommensurate
phase transition has been obtained using the Ginzburg–Levanyuk criterion, which says that
the IC phase is critical in a temperature interval of 4 K aroundTi [34]. The width of the
critical region is here a result of the competition between fluctuations, enhanced by the
presence of the Lifshitz point (whereβ ≈ 0.2) in the x–T diagram, and the long-range
dipolar forces, which tend to reduce the fluctuation region [31, 34]. In fact, birefringence
measurements [35] give a value ofβ = 0.35 for a temperature interval close toTi for
Sn2P2Se6, as expected from for example a 3dXY -model. This indicates that it is indeed
the case that not the whole of the IC phase is critical in this compound, in contrast to
what has been claimed for other materials such as Rb2ZnBr4. The observedβ-value must
therefore be considered as an effective value.

At low temperatures an additional intensity is observed, at variance with the x-ray
experimental results [27]. A similar additional intensity was found for sample No 2 as
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well as in birefringence and dilatation experiments [36]. The magnitude of the intensity
overshoot1I , relative to the value extrapolated from the high-temperature rangeI0(Tc)
(1I/I0 = 16± 3% for sample No 1 and 15± 5% for sample No 2), is comparable to
what has been found in the dilatation experiment, where〈1P 2/P 2

0 〉 is 0.17 and 0.19 for
vapour-transport-grown and Bridgman-grown crystals, respectively.

The nature of this increase nearTc is still an open question. Though such a behaviour
can be expected for certain parameter values of the thermodynamic potential of type II
proper ferroelectrics, as shown by Golovko [37], it was found in a model in which soft
solitons lead to a (continuous) second-order phase transition. Clearly, for Sn2P2Se6 the
lock-in transition is first order. Furthermore, the x-ray studies by Barsamianet al indicate
that higher-order satellites must be of low intensity (I3q 6 5% of Iq). One possibility is
that a second-order phase transition becomes first order, related to strain coupling [38]. It
would be interesting to investigate this possibility theoretically for Sn2P2Se6-type crystals,
for which the coupling between the modulated polarizationPq and strainuq is expected to
be strong in the incommensurate phase.

Figure 5. Diffuse scattering alongc∗ aboveTi (curves 1 and 2) and the (4 0 0,+) satellite
Bragg reflection belowTi (curves 3 and 4).

The intensity distribution of the diffuse critical scattering has been probed in the
paraelectric phase just aboveTi using elastic(E = 0) scan cross-sections alongc∗

(figure 5) anda∗. In thea∗-direction no significant broadening is observed for the diffuse
scattering compared to the satellite peak, as given by Gaussian fits including background.
However, along thec∗-direction a clear broadening (65%) can be seen, which survives
in the incommensurate phase just belowTi as a weak and broad background (220 K).
The difference between the intensity distributions along thea∗- and c∗-directions can be
understood, since fluctuations along the ferroelectric axis (at an angle of 10◦ to a) are
strongly reduced by dipolar interactions.

Reliable correlation lengths, however, cannot be extracted from our data, since the
observed diffuse scattering differs from the total (energy-integrated) diffuse scattering, due
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to the finite energy resolution (approximately 0.2 THz). The diffuse intensity observed here
arises from the low-frequency part of the acoustic and optic phonon response, as well as
from the central peak, close toTi (see section 4.2).

In figure 5, close to 0.1c∗ a reproducible dip is observed in the diffuse scattering at both
222 K and 224 K. This is characteristic of an interference effect, and might be related to the
coupling between the soft TO and the TA phonons in the paraelectric and incommensurate
phases, which will be discussed in the next section.

4. The lattice dynamics of Sn2P2Se6

The lattice dynamical study of Sn2P2Se6 has been carried out on the same two samples,
No 1 and No 2, on which the satellite measurements were made. Attention was focused on
the low-frequency phonon spectra in the incommensurate and paraelectric phases in order
to investigate the soft mode associated with the formation of the incommensurate phase.
In addition, we investigated the soft-mode behaviour in the Brillouin zone centre in the
ferroelectric phase and its dispersion in thea–c plane at 100 K.

Figure 6. Low-frequency phonon dispersion in the ferroelectric phase of Sn2P2Se6. Besides
the longitudinal and transverse component of the optic phonon, two LA and TA phonons are
observed. Solid lines are guides to the eye. The broken lines are extrapolated from the ultrasonic
velocities. The velocityvE(xx) is obtained by means of ultrasound in the paraelectric phase
(see the text); agreement between the slopevD(xx) and the neutron experiment can be obtained,
assuming a value for the electromechanical coupling constant ofk11 ≈ 0.7.

4.1. The ferroelectric phase

Figure 6 shows the dispersion of the TA (xz) transverse acoustic phonons as well as the LA
(xx) and LA (zz) longitudinal phonons. The limiting slopes of the dispersions, as derived
from ultrasound velocity measurements for the ferroelectric phase [21], are given by the
dashed lines. A good agreement is observed, except for the LA (xx) branch which deviates
from the ultrasonic value ofvE(xx). For the LA (xx) branch, the ultrasonic velocity at
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100 K shows a strong dispersion in the frequency range of the measurements (10–70 MHz),
which has been attributed to relaxation due to domains. Therefore, the neutron data have
been compared to the ultrasonic velocityvE(xx) obtained in the paraelectric phase, where
the domains are absent.

Nevertheless, a discrepancy between the INS and ultrasonic measurements then remains,
as seen in figure 6. The same situation is observed for Sn2P2S6 [39], for which the
discrepancy inv(xx) will be shown to result from an increase in sound velocity caused
by the piezoelectric effect, which couples the LA (xx) and LO (Px) phonons. In this
process, the velocity is increased by the additional internal longitudinal electric polarization
of the acoustic phonon. This is a result of the macroscopic electric fieldEM , similarly to
the LO–TO splitting (ωLO > ωTO) of long-wavelength polar optic modes. The piezoelectric
parameters of Sn2P2Se6 are undetermined, but from the neutron measurements a value of
k11 ≈ 0.7 for the electromechanical coupling constant may be estimated, which is of the
same magnitude as the known value ofk11 for Sn2P2S6. This results in the slope indicated
by vD(xx) in figure 6. The coincidence of the slopes and neutron data for the other acoustic
branches shows that the corresponding piezoelectric corrections are small.

Figure 7. Soft-mode behaviour for the ferroelectric phase of Sn2P2Se6 from constant-Q scans
at the (3 0 1) Brillouin zone centre. The full lines are damped harmonic oscillator (DHO) fits.

In addition, anx-polarized optic phonon is observed at 1.2 THz at the Brillouin zone
centre, in agreement with Raman experiments [40]. The LO–TO splitting is low, about
0.1 THz and, remarkably, negative (ωLO < ωTO). This is in disagreement with the Raman
results, where a small positive splitting of about 0.07 THz is observed. A similar effect
is also observed for Sn2P2S6 [39]. There it will be shown that the negative splitting for
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Sn2P2S6 results from coupling to the nearbyz-polarized optic phonon. The latter coupling
is strong, as observed in Raman experiments. A similar situation is expected to occur for
Sn2P2Se6.

In figure 7, constant-Q spectra taken at the (3 0 1) zone centre are given for different
temperatures for the ferroelectric phase. A clear soft-mode behaviour can be observed:
the frequency shows a distinct decrease and the damping increases upon approaching
the incommensurate phase transition (Tc = 193 K). At low frequencies a strong wing
is observed, related to the resolution-broadened Bragg reflection.

Figure 8. The temperature dependence of the soft-mode frequency (solid circles) and damping
(open circles) for the ferroelectric phase of Sn2P2Se6. The solid line represents a frequency
dependenceω2 = A|T0− T | with the virtual ferroelectric–paraelectric transition atT0 = 205 K.
At low temperature the apparent phonon linewidth is dominated by the resolutionR (about
0.22 THz).

The temperature dependence of the SM frequency (figure 8) follows the expected
ω2 = A|T0 − T | behaviour close to the lock-in transition, where we usedT0 = 205 K for
the virtual ferroelectric–paraelectric transition temperature (obtained from an extrapolation
of the temperature dependence of the inverse dielectric susceptibility at 109 Hz [41]),
and A ≈ 0.024 THz2 K−1. A much flatter temperature dependence is observed at low
temperatures, where the squared frequency clearly does not follow aω2 = A|T0 − T | law.
This behaviour can probably be related to the coupling of the TO (Px) phonon to other
optic phonons, most strongly to the nearbyz-polarized optic phonon. The damping shows
an increase close to the phase transition, as expected for displacive ferroelectrics [42].

4.2. The paraelectric phase

The observed satellite selection rules confirm the presence of an approximately transverse-
modulated ionic displacement wave alongqIC (approximately parallel toc∗) polarized along
a, as found previously in x-ray diffraction studies [26, 27]. In order to investigate the
temperature behaviour and dispersion of the low-frequency optic and acoustic phonons,
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Figure 9. Mode symmetries along thec∗- anda∗-directions in the paraelectric phase(P21/n).
Solid lines represent A′ phonons and dashed lines A′′ phonons, respectively.

which are expected to become unstable atTi , we studied the INS response in several
geometries in thea∗–c∗ plane with a neutron momentum transfer approximately alonga∗.

The symmetry of the lattice vibrations in thea–c plane in the paraelectric phase can
be determined by correlation methods [43]. The space groupP21/n (τ = (1/2 0 1/2))
has four symmetry elements: the glide planeσ normal to [0 1 0] (τ = (1/2 0 1/2)), the
screw axis C2 (τ = (0 1/2 0)), the inversion i and the identity E. A schematic picture
of the lowest phonon branches in thea∗–c∗ directions is given in figure 9. At the zone
centre, four different irreducible representations Ag, Bg, Au and Bu exist. In thea∗–c∗

mirror plane (1) the modes are symmetric (A′) or anti-symmetric (A′′) with respect to the
glide plane symmetry. At12a

∗ and 1
2c
∗ the modes are doubly degenerate, because of the

non-symmorphicity of theP21/n space group which contains a second-order screw axis
and a glide plane.

In the1 plane the possible interactions between phonons of the same representation as
the softPx-mode (A′) are listed in table 2 below.

In the ferroelectric phase only the glide plane remains. Nevertheless, in thea–c plane

Table 2. Low-frequency modes (A′ symmetry).

Along c∗ TAzx LA zz TO (Px ) LO (Pz)
Along a∗ TAxz LAxx LO (Px ) TO (Pz)
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the same conditions continue to hold, except that at the0 and B points the irreducible
representations change to A′, A′′.

In the paraelectric phase, the transverse acoustic TA (uxz) phonon and the low-frequency
soft transverse optic TO (Px) phonon are observed, as both are polarized alonga. Since the
TO and TA phonons are of same symmetry (A′) alongc∗, the two phonons can be expected
to mix (table 2). The TO (Px) phonon is expected to have a close connection to the IC
instability of Sn2P2Se6, since in Sn2P2S6 the TO (Px) phononis the soft mode related to the
ferroelectric phase, where the spontaneous polarization is approximately directed alonga.

Figure 10. The a∗–c∗ scattering plane and the Brillouin zones used in the study of thex-
polarized branches.

The study of the temperature behaviour of the low-frequency branches was performed for
several Brillouin zones (see figure 10). In these zones the experimental probe is especially
sensitive to displacements alonga because of the|K · e|2 term in the dynamical structure
factor.

First, a study of the dispersion alongc∗ is presented. Spectra were generally collected
at a constant incident-neutron wavevectorki = 2.662 Å−1, yielding a resolution of about
200 GHz. For scans near (3 0±(1+ ξ)) an incident-neutron wavevectorki = 1.64 Å−1

was selected, with an improved energy resolution of about 60 GHz.
In figure 11 we present the spectra obtained in the (3 0±(1+ξ)) geometry at 297 K. For

the (3 0−(1+ξ)) spectra it seems that only the TA(uxz) phonon is present: the position of
the maximum is slightly above the position expected from the value of the sound velocity
at room temperature(v(xz) = 1.83×103 m s−1 at 295 K). The integrated phonon intensity
drops asq2 with increasingq, as is expected for an acoustic phonon with approximately
linear dispersion (dashed line).

In the (3 0 1+ ξ ) spectra, at (3 0 1.2) and (3 0 1.3) a second peak is clearly observed
at lower frequencies. One of the peaks is approximately at the same position as in the
corresponding (3 0−(1+ ξ )) scan, albeit slightly displaced to higher frequency: the pred-
icted sound velocity, indicated by the dashed line, corresponds to the lower, relatively sharp
edge of the peak rather than to the maximum as for (3 0−1.3). The lower-frequency peak
is assigned to the TO (Px) phonon branch. It therefore appears that at this temperature and
in this wavevector range the TO (Px) phonon is at lower frequencies than the TA (uxz)
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Figure 11. Room temperature spectra at (3 0−(1+ ξ )) and at (3 0(1+ ξ )). The dashed
horizontal lines are shifted baselines.

phonon. It will be shown in section 4.3 how the TA and TO mode frequencies can be
extracted from the spectra in figure 11.
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Figure 12. Constant-Q scans atQ = (3 0 1.1) showing the softening of the TO phonon and
the appearance of a central peak asT → Ti .

A clear softening is observed, for example for the spectra at (3 0 1.1), i.e. for a
wavevector close to the position of the satellite diffraction peak atT

(−)
i (figure 12). The

data in the range [−0.26 THz:−0.14 THz] have been removed from the scans in figure 12
because of contamination by the (3 0 1) Bragg tail. Again two phonons are observed in
the low-frequency spectra at room temperature, the lowest of which shows a clear soft-
mode behaviour on approaching the IC phase transition. Close toTi , the soft phonon
is accompanied by a central peak, which rapidly increases in intensity upon approaching
the phase transition and shows a slight narrowing. A damped harmonic oscillator (DHO)
analysis clearly shows that the lowest phonon decreases significantly in frequency in the
paraelectric phase (ω0 = 0.34 THz (γ = 0.08 THz) at 297 K andω0 = 0.18 THz
(γ = 0.13 THz) at 223 K), whereas the upper phonon stays more or less at a constant
frequency. At 218 K, the strong elastic intensity in figure 12 (top) corresponds to the
satellite diffraction peak. A critical elastic component (a ‘central peak’) is also observed
aboveTi = 221 K, with increasing strength asT → Ti . At 0.1 c∗, this central peak can be
detected up to 20 K aboveTi . Above 240 K, the elastic intensity at 0.1c∗ is identical to the
Q-independent elastic incoherent background. The extent of the central peak in momentum
space appears to be quite limited: at 0.2c∗ no extra elastic intensity was detected nearTi .
The apparent linewidth of the central component varies from 80 GHz at 230 K and above to
60 GHz at 223 K and below. We believe these widths to be almost entirely of instrumental
origin. The apparent frequency narrowing on cooling is probably a consequence of the
momentum-space narrowing of the central component on approachingTi .

The central peak is indicative for an intrinsic order–disorder component in the soft-mode
fluctuations. The dynamics is therefore intermediate between those of, for example, NaNO2
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(order–disorder) and SrTiO3 (soft mode). In the former, only a central peak is observed, over
a wide range of the momentum space, which narrows critically on approaching the phase
transition. In the latter, the central peak of unresolved width is believed to be of extrinsic
origin, reflecting the coupling between the soft-mode coordinates and slowly relaxing defects
or impurities, with a characteristic relaxation rate orders of magnitude slower than that of a
typical soft-mode frequency.

The intrinsic character of the central component in Sn2P2Se6 is supported by x-ray
structural studies and the behaviour of the heat capacity. A recent x-ray structure refinement
revealed the partially disordered structure of Sn2P2Se6, with two equally occupied (quasi-)
equilibrium positions for each tin atom. The heat capacity data revealed a large transition
entropy atTi , characteristic of an order–disorder mechanism in the phase transition. The
apparent width of the central peak observed in the neutron study shows that the timescale of
the relaxation is at least larger thanτ ≈ 2.5 ps (0.07 THz), i.e. significantly longer than that
of the soft mode (0.18 THz). Interestingly, a Brillouin study of the related crystal Sn2P2S6

shows indications for a central peak near its paraelectric–ferroelectric transition.

Figure 13. The low-frequency dynamics at (4 0−0.4). The solid lines are best fits of the
spectra according to the coupled-DHO model for the phonons, aboveTc (see section 4.3).

4.3. Coupled-mode analysis

We shall now show that the scheme of a low-lying transverse optic (‘ferroelectric’) branch
which softens in the paraelectric phase and which condenses atTi (q = 0.1 c∗) is
oversimplified. In the paraelectric and also in the incommensurate phase it was found
that the line-shape strongly depends on the Brillouin zone investigated, as shown for the
(3 0 ±(1+ ξ)) spectra at room temperature: the (3 0 1+ ξ ) and (3 0−(1+ ξ)) spectra
show different line-shapes near the upper frequency maximum. Other anomalies are found
in the temperature evolution of the two peaks. For example, in the (4 0±0.4) zones
(figures 13 and 14) the double-peak structure stays more or less the same in the paraelectric
and incommensurate phases, but disappears atTc where only one maximum remains at an
intermediate frequency. Also the spectra at (4 0 2.4) and (4 0 1.6) show that a double-
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Figure 14. The low-frequency dynamics at (4 0 0.4). The solid lines are best fits of the spectra
according to the coupled-DHO model for the phonons, aboveTc (see section 4.3), including an
additional optic mode at 1.5 THz.

maximum structure is present throughout the incommensurate phase and disappears atTc.
Line-shapes of the kind shown above are characteristic of interference effects for two

coupled oscillators, as previously observed, for example, in BaTiO3 [1], KNbO3 [44] and
BCCD [45]. Therefore, we investigated in more detail the spectra forQ = (3 0 1.3) and
Q = (3 0 −1.3) at 230 K (figures 15 and 16). Like in the room temperature spectra
(figure 11), the (3 0−1.3) spectrum appears to exhibit only one (TO) phonon mode,
whereas the (3 0 1.3) spectrum indicates the presence of two phonons. An analysis using
uncoupled damped harmonic oscillators (figure 15) shows that the two sets of parameter
values describing the upper mode are mutually inconsistent. The upper phonon is sharper
for (3 0 1.3) than for (3 0−1.3). Furthermore, the sharp dip in the (3 0 1.3) spectrum and
the slow decrease of the response above 0.9 THz cannot be reproduced in a satisfactory
way in a DHO analysis.

The two line-shapes can be reconciled by using the response from a pair of coupled
oscillators, which can be described by a set of coupled equations of motion as first discussed
by Barker and Hopfield [46]. Their description is mathematically equivalent to the coupled-
DHO (CDHO) response discussed by Wehner and Steigmeier [47], which is reproduced
here.

The model is based on a simple extension of the dynamical matrix for two independent
harmonic oscillators:

D =
(
ω2

1 0
0 ω2

2

)
by inclusion of a term describing the interaction between the two oscillators. This is reflected
in the structure of the real and imaginary parts of the phonons’ self-energy:

π =
( −i 2ωγ1 2

√
ω1ω2112− i 2ωγ12

2
√
ω1ω2112− i 2ωγ12 −i 2ωγ2

)
in which the damping (diagonal part) is accompanied by real (112) and imaginary (γ12)
coupling coefficients.
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Figure 15. The coupled-mode response in Sn2P2Se6 at Q = (3 0 ±1.3) and 230 K. The full
lines are fits obtained using two independent DHO line-shapes.

Figure 16. The coupled-mode response in Sn2P2Se6 at Q = (3 0 ±1.3) and 230 K. The full
lines are CDHO fits. The corresponding ‘bare’ TA and TO phonon response functions are shown
as dashed lines.

The response is given by the following equation:

J (ω) = [n(ω)+ 1]
∑
ik

pipk Im[Gik(ω)] (4)

in which

Gii(ω) = 1

ω2
i − ω2+ πii − πikG(1)

k (ω)πki
(k 6= i; i, k = 1, 2) (5)

Gik(ω) = −G(1)
i (ω)πikGkk(ω) (6)
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G
(1)
i (ω) =

1

ω2
i − ω2+ πii

. (7)

In these expressions theG(ω) are the phonon Green functions, determined by the
components of the dynamical and self-energy matrices, and thepi,k are the oscillator
strengths which reflect the coupling of the oscillators to the experimental probe, in this
case the neutron beam. Therefore,pi andpk are related to the dynamical structure factors
Fi(K) andFk(K) of the phononsi andk respectively. The expressions forGik(ω) satisfy
the Dyson equation [47, 48] for the phonon propagators, and include the diagonal and
off-diagonal terms, as described by the phonon self-energy termsπik and πii , reflecting
interactions of the phonons.

It turned out that all of the measured spectra, i.e. at (3 0±(1+qc∗)) with ki = 1.64 Å−1

and at (4 0±qc∗ ), (4 0 2+ qc∗ ) with ki = 2.662 Å−1 could be analysed satisfactorily using
the above model, in which we included thek3

f cot(θf ) instrumental correction. Consistent
oscillator parameters for all of the different zones were obtained (table 3, column 1). For
example, in figure 16 the best-fit model simulation for (3 0±1.3) is given by the solid
lines. Figure 16 shows that the sharp dip for (3 0 1.3) and asymmetric line-shapes are much
better recovered using coupled oscillators.

Table 3. Coupled-DHO parameters at 230 K for (3 0±1.3). (ω1,2, γ1,2, 112, γ12 in THz and
p1, p2 in arbitrary units.)

1. Real coupling 2. Imaginary coupling

(3 0−1.3) (3 0 1.3) (3 0−1.3) (3 0 1.3)

ω1 0.72 0.71 0.477 0.510
γ1 0.04 0.02 0.165 0.151
ω2 0.69 0.72 0.874 0.866
γ2 0.27 0.29 0.145 0.159
112 0.20 0.19 0.00 0.00
γ12 0.00 0.00 −0.116 −0.136
p1 = |F1| 0.30 0.13 −0.106 −0.219
p2 = |F2| 0.42 0.45 0.50 0.417

In figure 16 the ‘bare’ uncoupled phonons (dashed lines) are shown, obtained by setting
the interaction to zero:112, γ12 = 0. The analysis suggests that the damped soft TO (Px)
phonon (oscillator 2) overlaps with the neighbouring sharp TA (uxz) phonon (oscillator 1).
The coupling is quite strong, as is reflected in the prominent distortions of the uncoupled
line-shape and the large value of112. For example, in the (3 0±1.3) spectra at 230 K,112

is roughly 50% of
√
ω1ω2/2, which is the upper physical limit for112 (consistent with the

requirement of real diagonalized frequencies (see [46])).
It should be noted that the difference between the spectra atQ = (3 0 1.3) and

Q = (3 0 −1.3) arises entirely from the variation ofp1, the bare acoustic mode structure
factor. In table 4 the best-fit parameters are shown for all of the spectra measured at 230 K.
It is seen that the line-shape changes in the (3 0±(1+qc∗)) spectra arise from the fact that the
structure factor of the ‘acoustic’ mode is low for (3 0 1+qc∗ ) and high for (3 0−(1+qc∗)),
whereas the optic mode is more or less the same for both. The sharpest features (e.g. the
dip at 0.7 THz) are clearly wider than the energy resolution of 0.06 THz. This shows that
the spectra taken atki = 1.64 Å−1 may be used to obtain physically meaningful damping
parameter values (γ1,2 in table 4). In contrast, the values for the dampings obtained at 0.4c∗

are unreliable due to the lower resolution atki = 2.662 Å−1 and have been left out. The
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Table 4. Parameters for coupled damped harmonic phonons at 230 K. (ω1,2, γ1,2, 112, γ12 in
THz andF1, F2 in arbitrary units.)

Q |F1(Q)| |F2(Q)| 112 γ12 ω1 ω2 γ1 γ2

(3 0−1.1) 0.48 0.52 0.075 0.00 0.23 0.30 0.07 0.24
(3 0 1.1) 0.41 0.73 0.08 0.00 0.22 0.29 0.03 0.22
(3 0−1.2) 0.40 0.54 0.16 0.00 0.52 0.47 0.06 0.28
(3 0 1.2) 0.17 0.45 0.17 0.00 0.48 0.47 0.03 0.26
(3 0−1.3) 0.30 0.42 0.20 0.00 0.72 0.69 0.04 0.27
(3 0 1.3) 0.13 0.45 0.19 0.00 0.71 0.72 0.02 0.29
(4 0−0.4) 1.89 0.00 0.17 0.00 0.98 0.85
(4 0 0.4) 2.20 0.00 0.18 0.00 1.04 0.83
(4 0 1.6) 0.087 1.64 0.16 0.00 1.04 0.82
(4 0 2.4) 1.53 0.00 0.13 0.00 1.01 0.82

parameter values at 0.4c∗ show further a somewhat larger spread than those for (3 0±1.1),
(3 0±1.2) and (3 0±1.3).

The spectra at (4 0 2) and (4 0 0) forqc∗ = ±0.4 c∗ have been analysed in the CDHO
model as well, resulting in fits which are in good agreement with the data (figures 13,
14). In figure 17 the spectra and fits for (4 0 2.4) are plotted at various temperatures. The
(4 0 2.4) spectrum has two maxima below 1.2 THz: a dominating sharp high-frequency
maximum at 1.05 THz and a weak broad shoulder at around 0.7 THz. On the other hand, at
(4 0 1.6) the broad low-frequency maximum at about 0.7 THz is dominant. The difference is
reflected in the parameters of the analysis (table 4), which show that the (4 0 2.4) spectrum
is produced by phonon 1 (acoustic) only, while the (4 0 1.6) spectrum consists mainly of
the optic contribution (phonon 2).

It is interesting to note that, even if the intensity of phonon 2 is negligible (as for
example at (4 0 0.4), table 4), the frequency and damping ofboth modes can be extracted
from the distorted line-shape. This reflects the fact that the response from the two phonons
cannot be reduced to a sum of the response functions from two independent renormalized
modes. This can be seen also in the equations given by Barker and Hopfield, which cannot
be transformed into two separate equations describing two independent DHOs. It shows
that (thermal) excitation of the acoustic phonon leads to an (indirect) response at the ‘optic’
frequency.

4.4. Discussion

In the above-described analysis, a satisfactory agreement with all of the measured spectra
has been obtained using a real coupling for all of the spectra. Further on, the assumption of
real coupling will be shown to be consistent with a continuum model for the thermodynamic
potential for the paraelectric phase of Sn2P2Se6. Important to notice, however, is the fact
that in the CDHO model one (real) parameter may be chosen arbitrarily, producing an
infinite number of equivalent parameter sets corresponding to the same calculated response
function, as shown by Barker and Hopfield [46].

In inelastic neutron scattering by two coupled phonons, the equation for the inelastic
scattering lawS(K, ω) is different from that forJ (ω), equation (4), in the eight-parameter
model, since the coupling of phonons to the experimental probe is different to that in the case
of light scattering. Therefore, neutron scattering may in principle provide an opportunity to
lift this indeterminacy, and determine the relative phase of theFj (K), as was done partially
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Figure 17. The low-frequency dynamics at (4 0 2.4) at various temperatures. AboveTc a broad
wing is observed below the sharp maximum at around 1.0 THz, which suddenly disappears
at Tc (as explained in section 4.6). The CDHO dynamics below 1.2 THz is accompanied by
higher-frequency optic phonons. The solid lines are fits according to the CDHO model(T > Tc)

and a DHO model(T < Tc).

for the case of cubic BaTiO3 [1]. The inelastic scattering lawS(K, ω) can be expressed in
terms of the phonon coordinatesQ(qj) andQ(qj ′) of the coupled branchesj andj ′, with
K = τ + q (τ ∈ 3∗ andq is a vector in the Brillouin zone):

S(K, ω) =
∑
j,j ′

Fj (K)F
∗
j ′ (K)

∫ ∞
−∞

dt e−iωt 〈Q†(qj, 0)Q(qj ′, t)〉 (8)

with the phonon structure factorF(K) given by

Fj (K) =
∑
d

bde−Wd(K,j)eiK·rd [K · ed(q, j)]M−1/2
d . (9)

In the case of coupled phonons, terms withj 6= j ′ appear in equation (8) in addition to the
usual individual phonon correlators (polarization mixing). One can show that the scattering
law can be written in terms of phonon Green’s functions as

S(K, ω) =
∑
j,j ′

Fj (K)F
∗
j ′ (K)[n(ω)+ 1] Im[Gjj ′(ω)] (10)

establishing the relation with equation (4). In expression (10) the relative phase of the
complex dynamical structure factorsFj (K) andF ∗j ′ (K) of the two coupled phonons isnot
arbitrary (as would be the case for uncoupled phonons). First, the nature of the coupling
(real or imaginary) imposes strict phase relations between the two eigenvectors,1φcj,j ′(q).
Also, the dynamical structure factors are complex because of the various complex terms
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in the summation (9) due to the position of the atoms and the size of the eigenvector
components. This gives rise to a second phase difference1φFj,j ′(K), now dependent on
the totalK. Therefore, the phase difference of the complex dynamic structure factors is
1φ1,2(K) = 1φc1,2(q)+1φF1,2(K). Furthermore, sinceG12(ω) = G21(ω) we arrive at the
following relation for two coupled phonons:

S(K, ω) = [n(ω)+ 1]
{
|F1(K)|2 Im[G11(ω)]

+ 2 cos(1φ1,2(K))|F1(K)||F2(K)| Im[G12(ω)] + |F2(K)|2 Im[G22(ω)]
}
.

(11)

In equation (11) the coupled phonon propagatorsGik are defined according to equations (2)–
(4). The additional cos(1φ1,2(K)) term prevents one from transforming equation (11) into
equation (4), upon replacing|Fi(K)| by pi . The actual observed line-shape will therefore
differ from J (ω) by a response proportional to Im[G12(ω)]. Neutron scattering therefore
may offer a way to determine the relative phase of the phonon coupling, by measuring the
dynamics atq in several Brillouin zones atK = τ + q.

Nevertheless, such a determination in practice is limited by the few Brillouin zones
actually accessible, preventing a rigorous determination of the eigenvectors and the phase
1φF1,2(K) from being made, as well as the low signal-to-noise ratio, preventing a strict test
of the validity of the CDHO model from being carried out.

In our study, only two zones were studied with a sufficient resolution (60 GHz) for
each wavevectorq. Therefore, the (perhaps rather crude) restriction of1φ1,2(K) = 0 was
imposed†. It is clear that in the case of1φ1,2(K) = 0 the CDHO model may be applied
successfully to describe the observed spectra consistently.

In the eight-parameter model (equivalent to1φ1,2(K) = 0), the choice of real or
imaginary coupling is mathematically arbitrary. In what follows, the dispersion branches
will be presented using an imaginary coupling, which is equivalent to the case of a
diagonalized dynamical matrixD (section 4.3). The frequencies obtained may in such
a case be directly compared to those lattice dynamical calculations which do incorporate
the interaction. Moreover, it prevents a non-allowed crossing of branches, which would
occur in the analysis of Sn2P2Se6 using a purely real coupling.

The analysis involving a purely real coupling, presented before, may be used to obtain
the true frequencies, corresponding to uncoupled modes of mixed character, by diagonalizing
the dynamical matrixD including the real part of the interaction:

D =
(

ω2
1 2

√
ω1ω2112

2
√
ω1ω2112 ω2

2

)
.

The diagonalized frequenciesω+ andω− obey

ω2
± =

1

2
(ω2

1 + ω2
2)±

1

2

√
(ω2

1 + ω2
2)

2− 4(ω2
1ω

2
2 − 4ω1ω21

2
12). (12)

The diagonalization is equivalent to the coordinate transformationU for (Px, uxz):

U =
(

cosθ sinθ
− sinθ cosθ

)
in which

tan 2θ = 4
√
ω1ω2112

ω2
1 − ω2

2

† In fact, calculations show that the exact shape is rather sensitive to the phase (keeping the other parameters
fixed), especially when the responses of the two phonons overlap and|F1(K)| ∼ |F2(K)|.
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as discussed by Barker and Hopfield [46]. Table 3 shows an example of two equivalent
parameter sets (1 and 2), obtained by diagonalizing parameter set 1. The changes in the
two frequencies reveal the repulsion between the two phonons occurring because of the
real interaction. The two branches obtained will have a mixed optic–acoustic character,
especially atq-positions where the interaction is strong and the (bare) frequencies are close.

Figure 18. The dispersion at 230.7 K,Q = (3 0 1+ ξ ) with diagonalized frequencies (ω+
andω−). The dashed lines are the bare branches in the continuum model (section 4.5), which
transform into the full lines on taking the coupling into account. Also, the dampings of the
mixed phononsγ+ andγ− are presented, together with the interaction dampingγ+−.

The diagonalization of the dynamical matrix will be accompanied by a corresponding
transformation of the damping matrixΓ′ = UΓU†:

Γ =
(
γ1 γ12

γ12 γ2

)
=
(
γ1 0
0 γ2

)
→ Γ′ =

(
γ+ γ+−
γ+− γ−

)
.

After the transformationU, the line-shape distortions are reflected by the non-zero and large
γ12 (table 3, column 2, and figure 18).

The parameters obtained from the CDHO analysis of the spectra (see section 4.3) for
various zones were averaged: the dispersion points atqc∗ = 0.1 c∗, 0.2c∗ and 0.3c∗ were
obtained at (3 0±(1+ qc∗)) and atqc∗ = 0.4 c∗ they were obtained at (4 0±qc∗ ) and
(4 0 2± qc∗ ). The error bars were determined from the spread in the parameters of the
different zones, which were slightly larger than the individual errors of the fits. Subsequently
they were converted to the representation with112 = 0, ω± andΓ′, following the procedure
described above. The dispersion branches at 230 K are presented in figure 18, together with
the corresponding damping matrixΓ′ (γ−, γ+, γ+−).

It is interesting to notice that the lowest branch is almost at the position of the lowest
‘optic’ peak and the higher branch is at the position of the higher ‘acoustic’ maximum of
figure 11 for (3 0 1+ ξ) spectra.

Clearly, the two frequencies are temperature dependent (figures 18, 19 and 20). At
0.1 c∗, the upper branch softens, whereas at 0.2c∗ the lower branch softens. At higher
values ofqc∗ , the branches are more or less temperature independent. A clear repulsion
between the two branches is observed at lowq-values, accompanied by a transfer of damping
from the upper to the lower branch, most clearly at 0.1c∗. The damping of the upper branch
is almostq-independent, whereas the damping of the lower acoustic branch should obey
γ− ∝ q2 for low q-values.



4834 S W H Eijt et al

Figure 19. The dispersion at 297 K,Q = (3 0 1+ ξ) with diagonalized frequencies (ω+ and
ω−). The dashed lines are the bare branches in the continuum model, which transform into the
full lines on taking the coupling into account.

Figure 20. The dispersion at 223 K with diagonalized frequencies (ω+ andω−). The dashed
lines are the bare branches in the continuum model, which transform into the full lines on taking
the coupling into account (Tmodel= 205 K).

A clear soft-mode behaviour is thus observed, in which a concave shape develops in the
lower branch above 0.1c∗. The position of the inflexion point on the concave shape shifts
to lower q-positions on approaching the incommensurate transition, indicating its direct
relationship with the incommensurate instability at about 0.1c∗ (nearTi).

It should be noticed that the dynamics at 0.1c∗ at 223 K and 230 K will be influenced
by the presence of the central peak: a coupling of the soft mode to the central peak will in
general stabilize the soft-mode frequency.

4.5. The Landau model

A more direct picture of the relationship between the observed branch softening and the
incommensurate transition can be obtained from a simple model for the dispersion curves
and interaction strengths, valid in the low-q continuum limit.

Such a model is suggested by the analysis of the spectra with the assumption of real
coupling (see figure 21, 230 K). It assumes that all of the soft-fluctuation behaviour is
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Figure 21. The dispersion at 230.7 K,Q = (3 0 1+ ξ) obtained using the real coupling112:
�: ωopt (broad mode);�: ωac (sharp mode);4: 112. The full lines are obtained from the
continuum model (see the text).

contained in a ‘bare’T -dependent optic mode (polarizationPx), which interacts with a
temperature-independent acoustic mode (strainuxz) via a temperature-independent (and real)
interaction strengthd(q) = 2

√
ωOωA112(q).

This is indicated in the temperature dependence of the ‘bare’ dispersion curves along
c∗, obtained under the assumption ofreal coupling (112). The dispersion branches,
corresponding to a heavily damped (TO) phonon and a sharp (TA) phonon (section 4.3), are
found to be relatively close together for all three temperatures 223 K, 230 K and 297 K. The
acoustic branch stays constant within the error bars, whereas a clear softening of the damped
optic branch is present upon lowering the temperature. The largest changes occur at lowqc∗ ,
and are experimentally quite clear for 0.2c∗. The interaction parameter112 clearly shows an
increase along the dispersion branch, and reaches large values approaching the Brillouin zone
boundary. It shows a slight increase upon lowering the temperature, related to the softening
of the optic branch (figure 21), in agreement withd(q) = 2

√
ωOωA112(q) ∼= constant.

The observed temperature variation of the branches may be modelled by extending the
thermodynamic potential of section 3, including an interaction between the polarizationPx
and the strainuxz = ∂ux/∂z.

In incommensurate phases of type II proper ferroelectrics (for example NaNO2, thiourea
and BCCD [49]), such a coupling between the strain and the order parameter coordinate
(polarization) can be the origin of the incommensurate instability, as first discussed for
the IC phase in quartz by Levanyuk and Aslanyan [50]. The lowest-order thermodynamic
potential for Sn2P2Se6 up to fourth order, including a(γ /6)P 6 term for stabilization of the
ferroelectric phase(β < 0), is [50]

8 = 80+ α
2
P 2+ β

4
P 4+ γ

6
P 6+ δ

2

(
dP

dz

)2

+ g
4

(
d2P

dz2

)2

+ λ
2
P 2

(
dP

dz

)2

+ C

2

(
∂ux

∂z

)2

+ µ∂ux
∂z

dP

dz
(13)
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in which ∂ux/∂z is the strainuxz. The interaction is represented by the last term

µ
∂ux

∂z

dPx
dz
.

If we assume travelling waves along thez-axisP = Pqeiqz−iωt , u = uqeiqz−iωt we arrive
at the following equation for the potential:

8(P, u, q) =
(
α

2
+ δ

2
q2+ g

4
q4

)
P 2
q +

(
β

4
+ λ

2
q2

)
P 4
q +

γ

6
P 6
q +

C

2
q2u2

q + µq2uqPq.

(14)

From this we obtain the dynamical matrix in the paraelectric phase from

Dij = ∂28

∂Qi ∂Qj

∣∣∣∣
Qi,j=0

in whichQ1 = Pq andQ2 = uq†:

D =
(
ω2
opt d(q)

d(q) ω2
ac

)
=
(
α + δq2+ (g/2)q4 µq2

µq2 v2
Aq

2

)
.

The interaction turned out to be better described by‡

d(q) = µq

1.5π
sin(1.5πq) (15)

over a widerq-range, corresponding to an interactiond(q) = µq2 for small q, in whichµ
was adjusted to fit the development of the interaction parameter112 throughout the Brillouin
zone (table 5).

In our model, we accounted for the effects of the discrete lattice by taking

ωA = vA

π
sin(πq) (16)

for the acoustic dispersionωA, according to a discrete nearest-neighbour ‘single-ion’ spring
dispersion, and the interactiond(q) as given in equation (15).

In figures 18–20 and 21 we included the analysis of the dispersion curves at 230 K
and 223 K, 297 K according to this dynamical matrix. The initial parameters are given in
table 5.

Table 5. Model parameters for Sn2P2Se6.

a (THz2 K−1) T0 (K) δ (THz2 (c∗)−2) g (THz2 (c∗)−4) µ (THz2 (c∗)−1) vA (THz c∗)

0.0018 170 1.9 44 4.2 2.7

These parameter values are based as much as possible on values known from other
experiments on Sn2P2Se6. For the sound velocityvA, the sound velocity at room temperature
obtained in ultrasound measurements has been used (vA(xz) = 1.83× 103 m s−1 at 295 K;

† The normal coordinatesQ1 = Pq andQ2 = uq are in fact only proportional to the polarization and the strain
(∝ iquq). Therefore, the coefficients obtained from the dispersion analysis have to be multiplied by a specific
proportionality factor to obtain the coefficients of equation (14), which forPq is essentially the (dielectric) phonon
oscillator strength.
‡ The few points on the dispersion branch prohibit an accurate selection of theq-dependence of the interaction.
Models which are allowed in the full Brillouin zone (e.g.d(q) = (µq/2π) sin(2πq) with a maximum at around
0.3 c∗, or d(q) = (µ/π2) sin2(πq) with a maximum at around 0.5c∗), show a behaviour similar to that of the
present model.
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c∗ = 2π × 0.1469 Å−1). Furthermore, the position of the incommensurate instability
(qi = 0.1031± 0.0005c∗) imposes a condition on the parametersδ andg, which can be
obtained by puttingω−(qi) = 0 in equation (12). Therefore, we haveω2

acω
2
opt (qi) = d2(qi),

which for low q (neglecting the effects of the discrete lattice on the dispersion of the
interaction and the acoustic branch) is equal to

q2
i = −

(
δ − µ2/v2

A

g

)
. (17)

In our model, we have put all of the temperature dependence in the parameter
α = a(T − T0), putting all of the soft-mode behaviour in the ‘optic’ (Px) fluctuations,
while keeping all of the parameters of table 5 fixed in the simulation of the branches at
different temperatures. We setT0 to the value of 170 K, motivated by the extrapolation of the
paraelectric temperature dependence of the inverse dielectric susceptibility at 109 Hz [41],
showing that the virtual paraelectric–ferroelectric phase actually is first order. The value
of a was adjusted to the 297 K and 230 K data, resulting ina = 0.0018 THz2 K−1. This
is of the same order as that obtained from the temperature dependence of the zone-centre
paraelectric soft mode for the Sn2P2S6 crystal obtained by INS.

A good agreement between the simulated optic and acoustic branches and the
experimental results for the broad and sharp coupled phonons, respectively, is obtained at
all three temperatures. However, at 223 K (figure 20) the agreement could only be obtained
allowing for a deviation from the real temperature:Tmodel

∼= 205 K, due the influence of the
central peak. At all temperatures the dispersion of the interaction112 is well reproduced,
as shown in the example of figure 21 (230 K). Furthermore, the diagonalized branches at
all three temperatures (figures 18, 19 and 20) are satisfactorily modelled at the same time.

In figure 22 we show the temperature evolution of both branches obtained from the
model. The upper branch softens below 0.15c∗ and stabilizes at higherq, whereas the
lower branch shows a pronounced softening in the range 0.05–0.25c∗. At low temperature
(curve 4: 170.15 K) a real minimum appears in the lower branch, which condenses at
qIC ∼= 0.090 c∗ (Tmodel= 170.1 K). Therefore, the model shows that the incommensurate
phase may result from the softening of thePx-fluctuations, creating an instability at an

Figure 22. The model simulation of the incommensurate instability of Sn2P2Se6. 1: 235 K;
2: 205 K; 3: 180 K; 4: 171.15 K.
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incommensurate wavevector position, only because of a (constant) interaction to the hard-
strain fluctuations.

It should be noted that the simulated IC phase transition occurs at too low a temp-
erature. This may result from the presence of a central peak (figure 12), which stabilizes
the soft branch at around 0.1c∗ aboveTi , and contributes substantially to the inverse
susceptibilityχ−1.

Therefore, the mixed branch does not completely condense in Sn2P2Se6, but triggers
the phase transition. Also, the few experimental points on the dispersion branch are not
sufficiently numerous to allow one to model the real optic branch rigorously. Nevertheless,
the present continuum model shows the importance of the observed phonon coupling for
the phase transition mechanism.

It is interesting that in the present interaction model a small change in the material’s
parameters (such as an increase ofδ andvA, or a decrease of the interaction parameterµ)
will change the position of the instability fromqIC 6= 0 to qC = 0. For example, applying
the parameter set given in table 6 will result in a ferroelectric phase transition rather than an
incommensurate transition. In the parentheses, the borderline values for passing to a direct
paraelectric–ferroelectric transition are given, starting from the parameter set of table 5, and
changing one of the parametersδ, µ or vA.

Table 6. Model parameters for a direct paraelectric–ferroelectric phase transition. In the par-
entheses the limiting values are given.

a (THz2 K−1) T0 (K) δ (THz2 (c∗)−2) g (THz2 (c∗)−4) µ (THz2 (c∗)−1) vA (THz c∗)

0.0018 170 2.4 (2.38) 50 4.0 (3.7) 2.7 (3.05)

The sensitivity of the reciprocal-space position of the instability to the material
parametersδ, µ and vA allows us to investigate further the origin of the Lifshitz point
of thex–T phase diagram of Sn2P2(S1−xSex)6. For example, the sound velocity of Sn2P2S6

is 3.24 THzc∗ (with c∗ = 2π × 0.1536 Å−1 [13]), which exceeds the maximum value
by 6% (table 6). A linear change of the sound velocity solely as function of composition
would result in the disappearance of the incommensurate phase atx = 0.35, quite close
to the actual Lifshitz composition (xL = 0.28). Therefore, the interaction seems to play a
substantial role in the presence of the Lifshitz point in the phase diagram. A comparative
study of the dispersion properties of Sn2P2S6 will be published in a separate paper.

4.5.1. Concluding remarks.It is interesting to speculate on the origin of the observed
strong interaction. A possibility would be a relationship to the disorder of the tin atoms,
recently observed in x-ray structure refinement of the paraelectric phase. The tin atoms
occupy two (quasi-) equilibrium positions, separated by 0.34Å (293 K).

It is known from microscopic modelling of the phase transitions of NaNO2 by Michel
and co-workers [51] that the rotational disorder of the NO2 molecules in the paraelectric
phase results in an interaction between the translational and rotational movements of the
NO2 molecules. It would be interesting to calculate the coupling strength induced by the
disorder for Sn2P2Se6.

Finally, it is important to notice that the condensed mode will be of mixed optic–elastic
character rather than a pure polarization wave (the continuum model analysis suggests that
the order parameterQs = 0.87Pq − 0.50uq close toTi .). Therefore, the IC phase is
expected to have an intrinsic elastic modulation component, as is the case for NaNO2.
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Figure 23. The temperature dependence of the spectra atQ = (3 0 1.2). The sharp peak(∗) at
around 0.15 THz at 218 K and 210 K in the incommensurate phase is probably related to Bragg
contamination by the nearby satellite diffraction peak. The solid lines are fits according to the
CDHO model for the phonons.

This may explain the observed self-focusing of light [52] for crystals in which the
incommensurate modulation wavelength is of the order of the wavelength of light (x = 0.40),
which may be produced by the strong elastic properties of the incommensurate phase,
through the photoelastic constants.

Moreover, it will be of importance in the understanding of the temperature dependence of
the dielectric constant in the IC phase, which has not yet been clarified using the modulated
polarization as the IC order parameter in Landau models.

4.6. The dynamics in the incommensurate phase

The temperature dependence of the soft branch across the phase transition sequence
paraelectric–incommensurate–ferroelectric has been studied in most detail at (3 0 1.2) (see
figure 23). In the paraelectric and incommensurate phases, clear interference line-shapes for
the TO and TA phonon are observed, as analysed in the CDHO model (continuous lines).
The intensity at low frequency, around 0.25 THz, increases when cooling in the paraelectric
phase, and the maximum at 0.25 THz slightly shifts to lower frequencies; this is related to
the soft-branch softening. At the same time, the intensity at frequencies above the sharp
maximum at 0.6 THz is reduced.

In the incommensurate phase the intensity at around 0.25 THz decreases gradually, as
is clearly observed by comparing the spectra at 218 K and 210 K, indicating a hardening of
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the soft branch. The strong, sharp peak(∗) at around 0.15 THz at 218 K and 210 K in the
incommensurate phase is probably related to Bragg contamination by the nearby satellite
diffraction peak, which increases in intensity and shifts to lower values ofqc∗ upon lowering
the temperature in the IC phase. The sharp maximum may also reflect a new acoustic branch,
starting at the satellite Bragg reflection. The response can hardly be related to the phason,
since dielectric measurements by Grigaset al [19] show that the phason is at much lower
frequencies. Furthermore, it can be expected to be severely overdamped.

Figure 24. The temperature dependence of the diagonalized frequencies atQ = (3 0 1.2) and
Q = (3 0 1.1).

In the incommensurate phase, the soft mode of the paraelectric phase is expected to split
into two new excitations, the amplitudon and the phason, which correspond to fluctuations of
the amplitude and phase of the incommensurate modulation displacement wave, respectively
[53, 54]. We attribute the ‘optic’ phonon in the IC phase to the response of the branch
corresponding to the amplitudon, which shows a pronounced coupling to the TA (xz) phonon
and seems to harden in the incommensurate phase. This can be seen from the temperature
dependence of the (diagonalized) frequency atQ = (3 0 1.2) in figure 24, where the lower
branch shows a clear softening in the paraelectric phase and hardens in the incommensurate
phase. The hardening is also reflected in the intensity monitored at 0.25 THz as a function
of temperature (figure 25), where a gradual decrease of the intensity is observed in the
incommensurate phase. Here, the anomalous peak(∗) may also contribute, prohibiting a
quantitative interpretation from being made. It seems clear that a discrete change of the
dynamical parameters occurs at the (first-order) lock-in transition for 0.2c∗ (figure 25).

In the ferroelectric phase at 190 K the low-frequency intensity has almost disappeared;
besides a sharp peak at 0.6 THz, there is a small maximum at around 0.85 THz. The
(3 0 ±1.1) data show a similar behaviour. The ferroelectric modes are found at higher
frequencies than for the other phases (figure 24).

Similar phenomena can be observed in the (4 0±qc∗ ) and (4 0 2+ qc∗ ) geometries
(figures 13, 14 and 17). From these spectra, it can clearly be seen that the spectra do
not change much upon lowering the temperature from RT down to 210 K, except minor
changes, which are related to a small hardening of the amplitudon in the IC phase (0.81 THz
(223 K) to 0.85 THz (210 K) at 0.4c∗), consistent with the (3 0 1.2) results and expected
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Figure 25. The temperature dependence of the intensity monitored atE = −0.25 THz for
Q = (3 0 1.2).

Table 7. Coupled-DHO parameters for (4 0 2.4). (ω1,2, γ12, 112 in THz,1φ1,2 in degrees and
F1, F2 in arbitrary units).

Q |F1(Q)| |F2(Q)| 112 γ12 ω1 ω2 1φ1,2

285 K 1.80 0.75 0.17 0.00 1.00 0.82 37
185 K 1.85 0.75 0.10 0.00 1.00 0.93 26

from simple theoretical models.
In the (4 0 2.4) (figure 17) and (4 0 1.6) spectra, the low-frequency maximum in

the dynamics below 1.2 THz further reduces in intensity upon lowering the temperature
to 194 K, just aboveTc. The tail suddenly disappears below the lock-in transition at
Tc = 193 K. The dynamic parameters therefore experience a discrete jump atTc. All
of the spectra at 0.4c∗ turned out to be best modelled by putting the interaction to zero
(112→ 0) immediately below the transition. Such an analysis is also satisfactory at 0.2c∗.
A comparison of the (4 0 2.4) and (4 0 1.6) spectra at 186 K shows their similarity in the
ferroelectric phase, and to the response at (4 0±0.4), in contrast to the responses in the
high-temperature phases. AboveTc, the (4 0 2.4) spectrum mainly reflects the response
of the optic phonon, whereas the (4 0 1.6) spectrum reflects that of the acoustic phonon
(section 4.3, table 4). BelowTc, the same can be expected; in the ferroelectric phase
the optic and acoustic phonons are therefore at about the same frequency and cannot be
separated. All of the trial interpretations following this scheme in the eight-parameter model
including a strong interaction (112 > 0.06) were found to be inconsistent with the observed
spectra. For example, for two coupled phonons at the same frequency, one should obtain a
double-maximum structure in most cases, clearly not observed belowTc.

It should be noticed, however, that the phase factors of the structure factor in
equation (11) play an important role in the exact interpretation of the dynamics. For example,
the spectral shape difference for (4 0 2.4) and (4 0±0.4) could only be obtained for slightly
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different interaction strengths (see section 4.3, table 4). Allowing the phase to be non-zero
allows one to vary the response further and a better agreement can probably be obtained
(table 7). As discussed, such an analysis is however beyond the scope of the present paper.

5. Conclusions

This study shows that inelastic neutron scattering investigation gives a wealth of information
about Sn2P2Se6.

A good agreement as regards the behaviour of the satellites with previous x-ray
experiments is found. A power law for the intensity is observed withβ = 0.43± 0.03, in
agreement with NMR and birefringence results, indicating that the incommensurate phase
is critical over a small temperature range only. The increase in intensity close to the lock-in
phase transition resembles dilatation and birefringence results. The origin and relation to
the lock-in transition is unclear, which calls for more theoretical research.

The incommensurate phase formation is shown to result from the condensation of a
system of coupled TO (Px) and TA (uxz) phonons, and not through optic–optic interaction,
although this is also present. Changes in the interaction parametersvA, δ and µ upon
changing the compositionx may explain the presence of the Lifshitz point, at which the
wavelength of the modulation becomes infinite.

The dynamics in the phase transition sequence paraelectric–incommensurate–ferro-
electric can be modelled in the following scheme. In the paraelectric phase, a transverse
mixed optic–acoustic soft mode polarized along thex-direction condenses at the modulation
wavevector position. The transition is mainly displacive with a minor order–disorder
component. In the incommensurate phase the amplitudon branch is observed. The
amplitudon is coupled to the TA phonon at non-zeroq∗c , and increases in frequency upon
lowering the temperature in the IC phase. At the lock-in transition, the modes show discrete
changes towards higher frequencies, and a reduced interaction strength. In the ferroelectric
phase a clear zone-centre soft phonon is observed, which at low temperature shows an
additional coupling to the (z-polarized) optic phonon(s).

Furthermore, the phonon responses were of high intensity, and the soft phonon appears
to be underdamped even quite close to the phase transition. Therefore, the study of crystals
of the ‘Lifshitz’ composition is expected to be feasible, even though the fluctuations are
expected to be stronger. A recent theory [10] predicts that the critical exponents of the
Lifshitz point deviate substantially from mean-field values (β = 1

3, α = 1
6 and γ = 11

6).
Furthermore, the expected critical range, estimated from the Levanyuk–Ginzburg criterion,
is large: τ = 10−2–10−1 (between 3 K and 90 K). Therefore, the temperature behaviour of
the soft phonon might be used to determine the exponentγ .

Future inelastic neutron scattering research on the properties of the mixed Pb–Sn
compounds (PbySn1−y)2P2Se6, which show a low-temperature incommensurate phase over
a broad temperature range, seems to be promising as regards studying the effect of quantum
mechanical fluctuations on the dynamics.
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